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Introduction

- World population growth, 1750-2100
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Introduction

Share of the Urban Population Worldwide

1980 2015 2050

39%
1.73) 3.968 6.419
billion billion billion

Source: Unibed Nanons, Deparmment of EConoomic and Socal Altalrs, Popudaton Division Q044)
World Urbaniration Prospecty The 2054 Rinvision, cundom cata scquiond via mebate

Urbanizations consume about 75 % of the global primary energy supply and
are responsible for about 50-60 % of the world’s total greenhouse gases.
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Introduction

During the last conference on Climate Change
(COP21) all 196 the participants states have signed
an agreement for reducing CO2 emission, energy
consumption and to move forward a low-carbon and
sustainable society.




Introduction

During the last conference on Climate Change
(COP21) all 196 the participants states have signed
an agreement for reducing CO2 emission, energy
consumption and to move forward a low-carbon and

sustainable society.

\‘/
«The reduction of CO2 emissions depends on about 2k /ﬁl :
70% of a combination of energy efficiency - -

and renewable» (International Energy Agency)
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Growing Market for Smart Grid Technology
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Introduction

Transition from a centralized to a distributed system with increase of RES
and Smart energy policies.
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This transition needs to be planed with specific tools able to:

1. estimate RES production in time,

2. effects of Smart energy policies

3. to assess the capabilities and requirements of distribution networks.



Challenges

1. Multi-Layer-System: Smart urban districts are complex systems that can be
represented with a Physical layer, a Cyber layer, a Social layer and an Environment
layer.

2. Simulation of Renewable Energy Production: The energy production of RES has to
be simulated with a fine grained spatio-temporal resolution.

3. Simulation of buildings dynamics: Features for analysing both thermal and
electrical dynamics in buildings.

4. Simulation of novel energy management policies: Novel control policies needs to
be evaluated in a realistic environment before being applied in a real-world context.

5. Simulation of distribution networks: to analyse the effects of energy management
policies.




Challenges

6. Simulations with different spatio-temporal resolutions: Simulate energy
phenomena with different time and space resolutions.

7. (Near-) real-time integration of real-world information: Heterogeneous
Internet connected devices are needed to develop more accurate event-based
models for analysing the operational status of the grid.

8. Modularity and extendibility in integrating data, models and simulators: Able
to integrate in a plug-and-play fashion heterogeneous data-sources, models

and simulators.

9. Scalability of the infrastructure: Horizontal and vertical scalability of the
infrastructure is another key requirement.



Motivation

This solution is intended to satisfy the needs of different end users such
as:

i) Single citizen;

ii) Energy aggregators and Energy Communities;
iii) Distribution system operators;

iv) Energy and City planners;

v) RES engineers.



SMIRSE Positing in MES State of the Art

Se-Case 3 Int ted : 2 Use-
Selutions :::":f‘""d Co-Simulation RTS :wmﬂo HILSIL  ToT Solutions ]:y:fsra Co-Simulation RTS (% HILSIL ToT
i . e i ¥ » DOS Hory i 3 s inke
DER-CAM [32] Physical Upw S.mmuu resolution . Multiple % . HUES [42] Repository Repository of simulation models.  x  Multiple X X
of physical encrgy-systems. Physical Real-time co-simulation
- 5 Hourly simulation . INSPIRE [43] Cyber of Cyber-physical X Multiple X x
HOMER [33] Physical of micro grid emergy-sy i X Multiple x x b energy-sysiems,
. . Real-time co-simulation
Energy PLAN [34] Physical :n:'r:gs s:nmhl.l-:nﬂmm x Multiple x x Yang et al. [45] Physical between two simulation . Sinsle HIL .
- el Cyber environments (MATLAB e e
Physical Co-simulstion of power.- and Function Block).
GRIDspice [74] P and communication-flows x  Muliple SIL  x T
? in smart-grids. Manbachi et al. [46] ?\'{:“’ of grid status and v Single 'SilllL x
Co-simulation of power- 2 Yol variation comtrollers. )
oty Physical and communication-flows aos Physical Real-time co-simulation
$Getm 6] Cyber for smart-grids application 8 Muokiple SiL. " Bottaccloll et al, [47, 48] Cyber of PV energy production v Single ;Illll- X
such as CVR. Environmental  and grid status, .
‘ ! Co-simulation of MES ; Real-time co-simulation
DIMOSIM [37] Physical 00 electrical power flows, X Multiple X x Physical of power- imd | WL
c Hahn et al. [49) Cyber communication-flows v Multple SIL A
e Physical o-simulation of power , ; i
MOSKIK (38=00] Cyber flow and load generation. X DMukiple SIL- x e :.::fzﬂmgmms
Co-simulation of demand Physical Real-time simulation Il
IDEAS [41] Physical side management with x  Single X X ENEL [50] Cyber of protection and v Multiple o7 X
thermal simualtion of buildings. i Sutomation strategies.
Co-simulation of demand Physical Real-time co-simulation
MESCOS [15]) Physical side management with X Single x x SMIRSE solution Cyber ¥ st grdd comtend v Multiple e v
21 % % algorithms and building SIL

thermal simualtion of buildings.

Environmemal

thermal loads.




SMIRSE Positing in PV State of the Art
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Contribution

Modelling and Simulation Modules

Third party
Data Sources:
-GIS
-BIM

Internet Connected
device:
-Indoor Sensor
-Smart meter
-Weather station
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Enabling Technologies
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MICRO-SERVICES IOT COMMUNICATION OPEN GEOSPATIAL CONSORTIUM
ARCHITECTURAL STYLE PROTOCOLS WEB SERVICES

OGC

Open Geospatial Consortium, Inc.
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Micro Services architectural style
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Micro Services architectural style

Tightly Coupled Heterogeneity in
system technology
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Micro Services architectural style

Tightly Coupled Heterogeneity in
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Micro Services architectural style

Tightly Coupled Heterogeneity in Composability
system technology
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Micro Services architectural style

Tightly Coupled Heterogeneity in Composability

system technology
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Representational State Transfer (REST)

Representational State Transfer (REST) is a coordinated set of architectural
constraints that attempts to minimize latency and network communication,
while at the same time maximizing the independence and scalability of
component implementations.
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A constraints that attempts to minimize latency and network communication,
Y component implementations.
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Representational State Transfer (REST)

Representational State Transfer (REST) is a coordinated set of architectural
constraints that attempts to minimize latency and network communication,
while at the same time maximizing the independence and scalability of

component implementations.
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MQTT

The publish/subscribe interaction paradigm provides subscribers with the ability to express their
interest in an event or a pattern of events, in order to be notified subsequently of any event, generated
by a publisher, that matches their registered interest.

Publisher message %
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Topic Subscriber



MQTT

The publish/subscribe interaction paradigm provides subscribers with the ability to express their
interest in an event or a pattern of events, in order to be notified subsequently of any event, generated

by a publisher, that matches their registered interest.
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MQTT

The publish/subscribe interaction paradigm provides subscribers with the ability to express their
interest in an event or a pattern of events, in order to be notified subsequently of any event, generated
by a publisher, that matches their registered interest.
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MQTT

The publish/subscribe interaction paradigm provides subscribers with the ability to express their
interest in an event or a pattern of events, in order to be notified subsequently of any event, generated
by a publisher, that matches their registered interest.
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Open Geospatial Consortium Standards IOGC]

e Web Processing Service (WPS): With this standard any geospatial
process can be “wrapped” with a standard interface and integrated into
existing workflows. WPS supports short and fast computational tasks
and long and time consuming process exploiting asynchronous
processing.

* Web Feature Service (WFS): specifies a standard for services that
provides access and operations to GIS features abstracting from the
underlying data store.

* Web mapping Service (WMS): standardizes a simple HTTP interface
for retrieving GIS maps from one or more distributed geospatial



The SMIRSE Infrastructure
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Enviromental Layer

* Geographical Information Systems (GIS) integrate georeferenced information
about the different entities (e.g. devices, buildings and pipelines) in cities. It

m m also includes cartographies cadastral maps and Digital Elevation Models.
* Building Information Models (BIM) are parametric 3-Dimensional models,
m where each model describes a building, both structurally and semantically.
« System Information Models (SIM) describe size and structure of energy

distribution networks. SIM is built by exploiting parametric and topological
data.

* Weather Data are retrieved by third party services, such as (Weather
Underground, 2017). This information is georeferenced and collected by
personal weather stations deployed in cities.



Physical Layer

Distributed Generation energy production measurements

Status of Distribution Grid that are needed to simulate energy flows and
evaluate the integration of RES. Thus, information sampled by devices

monitoring the energy distribution network.

loT devices, such as Ambient sensors, multi-vector Smart Meters (i.e.
electricity, gas, heating and water) and Actuators.



Cyber Layer

Communication
Adapter

Data
Integration
platform

Smart Metering
Infrastructure

The Communication Adapter enables the interoperability
across the heterogeneous devices in the Physical Layer and
among the Simulation and Modelling modules.

The Data Integration Platform integrates third party data
source and platforms in the Environmental Layer.

Metering Infrastructure that makes available historical data
collected from real distribution networks and post- message ,+*Y
processed information output of its services.

SMIRSE provides features to integrate also third party Smart E

Subscriber

Publisher

Virtual channel

Topic Subscriber



Example of a Communication Adapter
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Example of a Communication Adapter
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Modelling and Simulation Layer

Power prediction
and efficiency
characterization

Indoor Temperature
Simulation




Modelling and Simulation Layer

Solar Radiation
Decomposition
module decompose
GHI into DNI and DHI

Power prediction
o Indoor Temperature
and efficiency ” )
N Simulation
characterization




Modelling and Simulation Layer

Rooftop Solar Radiation
module simulates

incident solar radiation
on rooftops with a
resolution of 15
minutes.

Power prediction
and efficiency
characterization

Indoor Temperature
Simulation



Modelling and Simulation Layer

Photovoltaic Energy
module exploits both
Rooftop Solar Radiation

and Weather Data
modules to estimate PV

Power pr.e?hctlon indtormparatire Syste M pro duction.
and efficiency " )
N Simulation
characterization




Modelling and Simulation Layer

Real Time Grid Simulator
module integrates a Real-

Time Simulators to simulates
power distribution networks
with different time
resolutions ranging from

indtormparatire microseconds to hours.
Simulation

Power prediction
and efficiency
characterization




Modelling and Simulation Layer

Power Prediction and thermal
building characterization
provides tools to analyze and
predict the power demand of

thermal systems in buildings
connected to HDN. Provides

Power prediction — - KPIs for thermal
and efficiency - . e:nzera ki h . . f h b | d
characterization | LigiLGtfed characterization of the bul INgS




Modelling and Simulation Layer

Indoor Temperature
Simulator provides tools to
simulate and analyse the
thermal behaviour of

buildings. By combining BIM,

- o GIS, real Weather data with
OWEs pr.e. ' Indoor Temperature . . .
and efficiency siritatian environmental information

characterization

coming from loT Devices.




Energy Simulations with SMIRSE

* Photovoltaic energy simulation ,’,3'
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Real-time
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Energy Simulations with SMIRSE

* Photovoltaic energy simulation ,',3'

amo
* Renewable energy and Smart policies grid integration GCIlD

Real-time
Grid simulator

* Power Prediction and building efficiency characterization [Ei'l:] [@ ] []

g

* Indoor Temperature simulation



Photovoltaic Energy Simulation

Solar Radiation Rooftop Solar

IS

Data

Integration Photovoltaic

platform
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Details of Photovoltaic Energy simulation

‘Application Layer
Dashboards Web-Map Interface
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Details of Photovoltaic Energy simulation

Dashboards Web-Map Interface
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Details of Photovoltaic Energy simulation

Digital Surface
Model(DSM), which

I I

is a raster image that
represents terrain

elevation in 2.5D 1 , ;
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Details of Photovoltaic Energy simulation

Linke Turbidity
coefficients express

the attenuation of
solar radiation
related to air
pollution.

Cadastral
Maps
Turbidity Weather
coefficients % Data




Details of Photovoltaic Energy simulation

Cadastral maps are

2-Dvectorimages R T it o A
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Details of Photovoltaic Energy simulation

Third party = Gl oom aiwnleeleueomoaoion s
Wheatear data
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Details of Photovoltaic Energy simulation

Solar radiation
decomposition service
is in charge of proving
direct and diffuse solar
radiation components

' , |
- - Solar radiation | I-v - P :
to the Real-sky service if J\/" Modeling | | & : Lsti‘:nv;::n
third party weather
services provide only
Global horizontal Maps

. . Turbidity A Weather
ra d I at I O n . coefficients % Data




Details of Photovoltaic Energy simulation

Map Data Store service
is in charge of storing
produced (Clear sky =~ USRS (GARMEILILLD W=l O LI

I I

maps and Suitable ] w ] Power
Su r‘fa Ce) decomposition ' V Modeling i ; estimation )

Cadastral
Maps

Turbidity A Weather
coefficients % Data




Details of Photovoltaic Energy simulation

Clear-sky condition
service is in charge of
producing clear-sky
maps using as inputs
the DSM and Linke
turbidity coefficients.

N Cadastral
S Maps
coefficients % Data




Details of Photovoltaic Energy simulation

Real-sky condition
service is in charge of
producing real-sky maps
using as inputs solar
radiation data provided
by third party services.

N Cadastral
S Maps
coefficients % Data




Details of Photovoltaic Energy simulation

Suitable area service

identifies suitable @ W o e e
surface for PV modules ) _ |
on rOOftOpS’ by .‘.".".L‘.'_'T;T;T;T;T.:.'.:;T;T;T;T.:.%lT'.
analysing aspect and Solar radiation | ¢ v 2 - W3y Power |
slope maps of the study V" s B : '
area.

Turbidity
coefficients




Details of Photovoltaic Energy simulation

PV Power estimation
service provides NOCT
models for evaluating
the power production

considering " decomposition UL V. Modeling [\ BEEB " Planning T4/ *estimation |

temperature effects.
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Turbidity A Weather
coefficients % Data




Details of Photovoltaic Energy simulation

Floor-Planning service

provides a greedy = W e e
algorithm for PV
module placement 7_‘:'_':'_:'_'.'_'.'_".'_'.-.;:'_'.-.'.'.'_'.':.'.'_.-_'.-‘
with the objective of : o |
maximizing power | : RN
production.
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Details of Photovoltaic Energy simulation

I-V Modelling service

provides simulation of W 0, i--i-isimisiloiooo oo
tension and current
simulation of a PV ,'.'_".".;‘.‘_'."_T'_.‘.'.;'.'_'.'.’.‘.'_'.‘.'.‘.'_'T.'.‘?'_T'_"."
system by considering > :
a hardware model of
the module.
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L Power
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Turbidity A Weather
coefficients % Data




Case Study for PV simulation

Sommelier and Galfer *

Campus ===
Campus  Galker  Sommelier
Nominal Power [KW) 15.28 13.20 19.80

Module Power |W| 283 165 165
Number of PV modules 54 80 120
Module Efficiency [%%] 20.2 13.1 13.1
Module Temp. Coef. |%/'C] 0.38 0.48 0.48
Slope [7] 26 35 20

Aspect 7] (South 2707) 23 240 240

Installation year 2008 2004 2004




Results for Real-sky irradiance simulation

Spatio-Temporal Simulation
in Real-Sky condition

Solar radiation || s~z Real-sky
decomposition Condition




Results for Real-sky irradiance simulation

pring week

Spatio-Temporal Simulation
in Real-Sky condition

Solar radiation || s~z Real-sky
decomposition Condition




Results for Real-sky i | imulati
. . . Spring week
Spatio-Temporal Simulation side
in Real-Sky condition
1000
-4 t
x
%’600
400
200 i
Y.
o | 1 P
0512 05/13 0514 05/15 05/16
Date
Time " y >
Model M JCE MAD[%) MBD[%] r RMSD[%] WIA
resolution
Reindl [99] 080 1538 622 095 2093 098
Engerer [97) 077 1748 596 093 2416 098
Skartveit (100] 077 1746 862 093 2410 08
(Karasou[11) 080 1544 188 095 2073 _ 098 )
Ruiz-Arias [98] 080 1531 068 094 2075 098
Erbs [96] 080 1547 654 094 2142 098
Reindl [99] 078 1621 608 093 2352 098
Engerer [97] 0.75 19.09 -5.82 0.90 27.83 0.97
T Skartveit [100] . . 075 1875 855 091 2684 097
Solar radiation || s~z Real-sky (Karatsou [11)_ 078 1657 ____-140___093 2342 _ 098 )

Erbs [96] 0.78 16.95 -6.36 093 24.35 0.98
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Comparison with PERSIL methodology
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Volage (V)

Results of I-V Modelling
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MODEL RMSD WIA
Proposed 22.20% 0.975
NOCT Formula 28.29% 0.970
PERSIL 45.60% 0.880




Voltage (V)

Results of I-V Modelling
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Results of Floor-planning Qs |[{E e
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Case study of Realtime Grid Cosimulation
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Case study of Realtime Grid Cosimulation

Number of Floors
—d1-2

= 3-4
B 5-8
- 9-11




Case study of Realtime Grid Cosimulation

Energy Consumption

e 2.4-2.7 [MWh]
3 2.7-3.0 [MwWh]

7 3.0-3.3 [MWh
71 3.3-3.6 [MWh
i1 3.6- 3.9 [MWh
2 3.9-4.1 [MWh]
W% 4.1-4.4 [MWh]




Photovoltaic Potential and Production

PV Power Potential
e 1-19 [kw]
23 20 - 200 [kw]

i3 200-250 [km
i 250-349 [k
7% 350-449 [k
% 450 - 649 [k
e 650-970 [K

Potential PV power map



Photovoltaic Potential and Production

PV Power Potential PV energy production

e 1-19 [kw] w8 5-115 [kwh]

= 20 -200 [kw] % 115-230 [kWh
..... : 200 - zso [km % 230-528 [kWh
..... % 250 - 349 [k = 528-832 [kwh

£ 1183 - 1486 [kWh
= 1486.- 2223 [kwh

:...“. 350 - 449 [k
% 450- 649 [K
% 650-970 [k

Potential PV power map PV Energy Production map



Self-consumption and Self-sufficiency

Self-Consumption

5 79.8-79.8%
£379.8-79.8%
3 79.8-85.0%
1 85.0-96.6 %
% 96.6 - 100.0 %

Self-Consumption map



Self-consumption and Self-sufficiency

Self-Consumption

5 79.8-79.8%
£379.8-79.8%
3 79.8-85.0%
1 85.0-96.6 %
% 96.6 - 100.0 %

Self-Consumption map

Self-Sufficency
W 0.1-8.0%

£319.3-295%
£129.5-394%
W8 394-47.0%

Self-sufficiency map
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Power flow and Voltage Profile Monitoring
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ower flow and Voltage Profile Monitoring
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ower flow and Voltage Profile Monitoring
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Power Prediction and building efficiency
characterization
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Details of Power Prediction and building
efficiency characterization (PPBEC)

CHARACTERIZATION APPLICATION
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Case study
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Case study
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Peak Power identification algorithm (PD
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Power Prediction algorithm

On the basis of the outcomes of the SOD and PD algorithms, the
Power Prediction algorithm exploits the multiple version of the
Linear Regression with Stochastic Gradient Descent
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Power Prediction algorithm

On the basis of the outcomes of the SOD and PD algorithms, the
Power Prediction algorithm exploits the multiple version of the
Linear Regression with Stochastic Gradient Descent

Power Prediction algorithm defines a building model based on a
linear dependency between weather data and power level. PP relies
on the assumption that the average power exchange for a building
heating system at a given time instant is likely to be correlated with
the surrounding weather conditions.
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Characterization of Building thermal efficiency

Intra Building KPI
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Methodology for Indoor Temperature
Simulation

Simplified BIM models are the starting point for our energy simulations.
They include:

* accurate building envelope characterizations;

* facility management information (e.g. room type and occupants);

* materials nomenclature standards.

The Energy Analysis Model (EAM) consists of rooms and analytical surfaces
generated from the BIM model.
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Methodology for Indoor Temperature
Simulation

The EAM Simulation Engine evaluates energy performance of buildings

EAM Simulation

Energy Analysis Model
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Methodology for Indoor Temperature
Simulation

The EAM Simulation Engine evaluates energy performance of buildings

EAM Simulation
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Methodology for Indoor Temperature
Simulation

The EAM Simulation Engine evaluates energy performance of buildings
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Methodology for Indoor Temperature
Simulation

The EAM Simulation Engine evaluates energy performance of buildings

EAM Simulation

EAM
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Case Study

Primary school of 14,500 m?2 in two floors.

B Indoor sensor

QOutdoor sensor

Heating system from 4:00 a.m. to 7:30 p.m.

Corridor

| Outdoor sensor

16 loT devices to collect air
temperature and relative humidity: m
 15indoor

* 1 outdoor
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Experimental Results
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Experimental Results

) 3 Real-weather Sim TMY Sim vs
Rooms Indicator [%¢]

vs Measured Measured
MAD 8.02 16.82
Room | MBD 2.18 -16.64
RMSD 0.78 19.01
MAD 9.07 18.55
Room 2 MBD 0.10 -18.34
RMSD 10.83 20.74
MAD 9.35 16.94
Cornidor MBD 0.17 -16.06
RMSD 11.52 20.85
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Experimental Results

chul-weulhcr Sim\ TMY Sim vs

o - ffl'.

Rooms  Indicator [%] vs Measured Measured
MAD 8.02 16.82

Room | MBD 2.18 -16.64
RMSD 9.78 19.01
MAD 9.07 18.55

Room 2 MBD 0.10 -18.34
RMSD 10.83 20.74
MAD 9.35 16.94

Cornidor MBD -0.17 -16.06
RMSD | 11.52 ) 20.85
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Experimental Results

Real-weather Sim TMY Sim vs

. P ffl'.

Rooms  Indicator [%] vs Measured Measured
MAD 8.02 16.82

Room | MBD 2.18 -16.64
RMSD U 9.78 19.01 )
MAD 9.07 18.55

Room 2 MBD 0.10 -18.34
RMSD 10.83 20.74
MAD 9.35 16.94

Cornidor MBD 0.17 -16.06
RMSD 11.52 20.85
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Conclusions

e SMIRSE is a flexible and modular distributed infrastructure

* SMIRSE integrates heterogeneous information, also sent in (near-)
real-time.

* SMIRSE evaluates the impact of RES and Smart policies in cities and
distribution networks.

* SMIRSE Photovoltaic modelling and simulation overcomes the
limitations of SOA by providing real-sky simulations integrating
weather stations.

* SMIRSE models and simulate thermal behaviour of buildings.
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Scalability Issue

Number of shards




Scalability Issue
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